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Abstract

We study mixed-integer programming formulations, based upon variable disag-
gregation, for generic multi-commodity network flow problems with non-convex
piecewise linear costs, a problem class that arises frequently in many application
domains in telecommunications, transportation, and logistics. We present several
structural results for these formulations and we analyze the results of extensive ex-
periments on a large set of instances with various characteristics. In particular, we
show that the linear programming relaxation of an extended disaggregated model
approximates the objective function by its lower convex envelope in the space of
commodity flows. Together, the theoretical and computational results allow us to
make suggestions concerning which formulation might be the most appropriate,
depending on the characteristics of the problem instances.
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Figure 1: A Typical Piecewise Linear Cost Function

1 Introduction

Single and multi-commodity network flow problems with non-convex piecewise linear
costs arise in many application areas, including telecommunications, transportation and
logistics. We consider mixed-integer programming (MIP) formulations of a generic multi-
commodity network flow problem with piecewise linear costs. The formulations we study
are based on variable disaggregation techniques, which have been used over time to derive
strong MIP formulations for variants of the fixed-charge network flow problem, a special
case of our generic problem, but have not been studied extensively within the context of
general non-convex piecewise linear cost functions.

Given a directed network G = (V, A), with node set V, arc set A, supplies and
demands of multiple commodities at the nodes, and arc capacities, we consider the prob-
lem of finding the minimum cost multi-commodity flow when the objective is the sum
of |A| piecewise linear functions. As shown in Figure 1, we assume the cost g,(z,) on
each arc a of the network is an arbitrary piecewise linear cost function of the arcs total
flow, x,, with each piece having nonnegative slope and intercept. The function need
not be continuous and can have positive or negative jumps, though we assume that it
is lower semi-continuous, that is, g.(z,) < liminf ;... g.(x}) for any sequence x/, that
approaches x,. Without loss of generality, we also assume, through a simple translation

of the costs if necessary, that g,(0) = 0.
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Figure 2: Notation for Each Segment

We can fully characterize a piecewise linear function by its segments. Figure 2 illus-
trates our notation. On each arc a, each segment s of the function has a nonnegative
variable cost, ¢¢ (the slope), a nonnegative fixed cost, f (the intercept), and upper and
lower flow bounds, b5~! and b¢. Since the total flow on each arc can always be bounded
from above by either the arc capacity or the total demand flowing through the network,
we assume each arc a has a finite number of segments, which we represent by the set
Se=A{1,2,.... |5}

As additional notation, we let K denote the set of commodities, N the |V| x |A| node-
arc incidence matrix, and d* a vector of size |V| representing supplies and demands for
commodity k. We can decompose the flow x, on each arc a in two ways, by commodity or
by segment, with z* and x2 representing the flow of commodity k or the flow on segment
s, respectively. More specifically, =3 is the total flow on arc a if that flow lies in segment
s. Therefore, when a flow value of 7, lies in segment 3, 25 = 7, and 25 = 0 for all
segments s # 5. We also define binary variables, y, with y? = 1 if segment s contains
a nonzero flow, and y; = 0 otherwise. With this notation, we can express the piecewise
linear cost network flow problem (PLCNF) as the following MIP formulation:

min Y > cal + fiy, (1)
a€A s€Sq
subject to:

Nzt =d¥, kek, (2)



xa:Z:E’;, a€ A, (3)

keK
xa:ZxZ, a€ A, (4)

SES,
bilys <o <biys, a€ A s€eS,, (5)
Zysgl, a€ A, (6)

SESa

>0, acAkckK, (7)
ys€{0,1}, a€ A seSs,. (8)

By definition, we set b2 = 0 for every arc a. We refer to this formulation as the basic
model. Constraints (2) are the flow balance constraints typical in a multi-commodity
network flow formulation. For each node i and each commodity k, d¥ > 0 denotes
an origin node with supply d¥, d¥ < 0 denotes a destination node with demand —d¥,
and d¥ = 0 denotes a transshipment node. Constraints (3) and (4) define the flow by
commodity and by segment, respectively. The basic forcing constraints, (5), state that
if y7 = 0, then segment s has no flow, i.e., 27 = 0. If yJ = 1, then the total flow on arc
a must lie between the lower and upper bounds of that segment, i.e., b5t < 25 < b2,
Inequality (6) assures that we choose at most one y? to be positive on each arc a (when
> cs, Ya = 0, arc a has zero flow and zero flow cost). Notice that we do not explicitly
consider arc capacities, as we can model them through the definition of the cost function,
by setting the bound b2l on the last segment equal to the capacity of arc a.

Since the fixed-charge network flow version of the model PLCNF is known to be
NP-hard, PLCNF is NP-hard as well, though several well-known special cases, most
notably when the cost function is convex, are known to be polynomially solvable. To
solve the PLCNF, we would like to understand, and improve, the linear programming
(LP) relaxations of the basic model. Croxton, Gendron, and Magnanti [14] prove that
the LP relaxation of the basic model (as well as two alternative textbook formulations)
approximates the piecewise linear cost function with its lower convex envelope. Figure 3
illustrates the lower convex envelope for the concave case, i.e., when the cost function is

concave (thus satisfying f57! < f5 and ¢! > ¢, Vs € S,). For this problem class, the
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Figure 3: Lower Convex Envelope of a Concave Function

lower convex envelope is simply the line joining the origin to the point of maximum flow,

(28!, ga(ai™)).

In general, the approximation provided by the lower convex envelope is rather poor,
as evidenced by the computational experiments reported in Section 6. To improve upon
it, a classical MIP approach would add valid inequalities that tighten the LP relaxation.
The basic model lends itself naturally to two such simple classes of valid inequalities,
which are similar to the basic forcing constraints (5). These classes of inequalities use
the fact that the flow of commodity k on each arc a can be bounded from above by some
constant M* usually set to the total supply for that commodity. In the particular case
when each commodity has a single origin O(k) and a single destination D(k), which we
call the single O-D case, the bound M* simply equals d’g)(k), the supply for commodity
k.

The first class of valid inequalities, called the strong forcing constraints,

wh <MEY yi a€AkeK, (9)
s€Sq
state that when arc a has no flow (i.e., > ¢ 9 = 0), the flow of each individual com-
modity is zero, and when the arc carries flow (i.e., > .o ys = 1), the flow of commodity
k is bounded by MPF. In the remainder of this paper, we use the term strong model to
designate the PLCNF with the addition of the strong forcing constraints.

As compared with constraints (5), the strong forcing constraints (9) disaggregate
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commodities, but aggregate segments. If we could identify valid inequalities that dis-
aggregate both commodities and segments, we would obtain stronger valid inequalities.
Suppose we define additional variables x%* that equal the flow of commodity k on arc a if
the total flow on the arc lies in segment s, and equal zero otherwise. These new, extended
variables, are related to the previous ones via the simple equations: z; = ) , . xks and

k=3 s, 2. Using them, we can define valid extended forcing constraints:

ot < MFys a€ A ke K,seS,, (10)

that are obviously stronger than the strong forcing constraints, since we obtain the latter
by aggregating over the segments. We refer to the model obtained by adding the non-
negative variables x%*, the extended forcing constraints, and the definitional equations
T =Y pex Ths and af =3 o aF® to the PLONF as the extended model.

Note that when the cost function has a single segment as in the fixed-charge network
design problem, the strong and extended forcing constraints are the same. Our choice

of terminology for the strong forcing constraints is consistent with this special case. In

1
a

this special case, if b} = >, M¥* the so-called weak forcing constraint z < bly! is an
aggregation and so weaker than the strong forcing constraints. One question naturally
arises: under what conditions does the extended model improve upon the strong one?
We might also ask a similar question about the improvement achieved by using the LP
relaxation of either model in place of that of the basic formulation. The main objective of
this paper is to qualify, through theoretical results, as well as computational experiments,
the improvement obtained by the addition of either the strong or the extended forcing
constraints to the basic PLCNF model.

The paper is organized as follows. In Section 2, we review the relevant literature. In
Section 3, we provide bounds on the improvement obtained by the addition of the strong
forcing constraints, both in the concave case and in the general case. In Section 4, we
analyze the improvement provided by the extended forcing constraints. More specifically,
we generalize a result of Croxton, Gendron, and Magnanti [14] by showing that the LP

relaxation of the extended model approximates the piecewise linear cost function by its

lower convex envelope represented in the space of commodity flows, rather than in the



space of aggregated flows, as does the basic model. We also specify conditions guarantee-
ing the integrality of the LP relaxation of the extended formulation. Section 5 provides a
geometrical interpretation of the results from Sections 3 and 4. In Section 6, we present
and analyze the results of extensive computational experiments on a large set of instances
with various characteristics, and use them to confirm our theoretical investigations. In
particular, we examine different cost structures, concave and non-concave, for situations
when each commodity has one origin, but multiple destinations, studying the impact
of reformulating these instances as single O-D networks, a classic variable disaggrega-
tion technique in the context of multi-commodity network flow problems. Together, the
theoretical and computational results allow us to suggest when each of the formulations
might be the most appropriate. Through this analysis we aim, therefore, to contribute

to both theory and practice. Finally, in Section 7, we summarize our results.

2 Prior Literature

Although the literature on network flows is extensive, research concerning problems with
piecewise linear cost functions is limited, except for the concave and fixed-charge cases.
Balakrishnan and Graves [3] develop a Lagrangian-based algorithm for the uncapacitated
network flow problem with piecewise linear concave costs. Although their approach is
generic and applies to the non-concave case, we are not aware of computational exper-
iments reporting on the performance of this algorithm on networks with non-concave
costs. Cominetti and Ortega [11] use a branch-and-bound algorithm to solve the ca-
pacitated network flow problem with piecewise linear concave costs. They exploit the
concavity of the cost function and employ sensitivity analysis to improve the approxima-
tions and obtain better lower bounds. Motivated by a logistics application, Chan, Muriel,
and Simchi-Levi [10] examine the multi-commodity version of the same problem. They
derive structural results of a set-partitioning formulation, and then use this insight to
develop a linear programming based heuristic. Aghezzaf and Wolsey [1] study piecewise
linear concave costs in a tree partitioning problem.

Other relevant work on network flows includes research by Popken [33] who develops



an algorithm for the multi-commodity flow problem with continuously differentiable non-
concave costs. Kim and Pardalos [28] propose an approximation algorithm for the non-
convex piecewise linear network flow problem, which iteratively solves a series of linear
network flow problems with dynamically adapted costs and restricted domains. Holmberg
[24] develops an algorithm for the facility location problem with staircase costs based
upon convex linearization and Bender’s decomposition. Holmberg and Ling [26] use a
Lagrangian heuristic for the same problem.

The class of problems in network design is also related to our work, since the cost
functions for these problems are usually discontinuous. Magnanti and Wong [31] and
Minoux [32] survey network design issues in transportation planning and telecommuni-
cations, respectively. Balakrishnan, Magnanti, and Mirchandani [4] provide an annotated
bibliography concerning general network design issues. Most of the research in the area
of network design has focused on the fixed-charge case [5, 12, 21, 25, 27|, or on vari-
ants of the network loading problem, which arise in telecommunications applications
2,6, 7,8, 17, 18, 23, 30].

Within the context of multi-commodity network flow problems, many researchers have
addressed the idea of variable disaggregation. Rardin and Wolsey [34] study the MIP for-
mulations of multi-commodity uncapacitated fixed charge network flow problems, when
each commodity has a single origin and multiple destinations. They develop inequali-
ties that fully describe the projection onto the original variable space of a disaggregated
formulation obtained by representing each commodity with a single origin and a single
destination. Bienstock and Giinlik [9] study a variant of the multi-commodity network
flow problem with the objective of minimizing the maximum load on any edge. They
discuss the possibility of using a variable disaggregation by commodity, but found that
for their problem the improvement in the lower bounds generated by the LP relaxation
was not significant enough to warrant the increased computational power required.

Multi-commodity network flow problems with piecewise linear costs commonly arise in
transportation and logistics applications. For example, Croxton, Gendron and Magnanti

[15] exploit the disaggregation techniques discussed in the present paper to solve large-



scale instances of a logistics application called the merge-in-transit problem.

3 The Strong Model

In terms of the strength of their LP relaxations, the strong model sits between the
basic and extended models. We already noted that it is not, in general, as tight (as
measured by the objective value of its linear programming relaxation) as the extended
formulation. However, it is in general tighter than the basic model, and it is smaller than
the extended model, with fewer variables and constraints. The following result provides
an upper bound on the improvement obtained by adding the strong forcing constraints

(9) to the basic model.

Proposition 1 Let (T,y) be an optimal solution to the LP relaxation of the basic model,
with a value of 27, and let At = {a € A : T, > 0} be the set of arcs with positive
flow in this solution. The lower bound provided by the LP relaxation of the strong model

improves upon Z! by at most >acnt fa(1 =3 cs. U2)-

Proof: If (z,y) satisfies the inequalities (9), then this solution satisfies all the con-
straints of the strong formulation and must be optimal. Otherwise, only arcs with
positive flow, i.e., arcs in AT, can violate the constraints (9). For these arcs, it suf-

fices to change one or more of the values of the y variables so that they satisfy these

constraints. In the worst case (e.g., when zf = MF) we can increase y! for each
arc in AT until ) ¢y = 1 without violating any other constraints because the
model imposes no upper bound on y! (since 12 = 0). We now have constructed a

modified solution, (x,y), that is feasible for the strong formulation and that satisfies
yl=1-3, 21 y:. The cost of the original and new solutions are related by the follow-
ing: cost(z,y) = cost(,5) + Loenr F1(42 = 51) = cost(@,§) + Tuenr F1(1 = e, B0
Since Z! = cost(,y) and the optimal cost of the strong formulation is at most cost(x,y),
> aear Ja(l = >, cs, ¥s) is an upper bound on the improvement obtained by the strong

formulation. W

In the concave case, we can improve the upper bound provided by Proposition 1.



Proposition 2 Let (Z,y) be an optimal solution to the LP relazation of the basic model,
with a value of E\l, and define the set At = {a € A:Z, > 0}. In the concave case, the

lower bound provided by the LP relaxation of the strong model improves upon 7 by at

~k .
most 3 e g+ fo max{0, maxper {37} — ﬁ}

Proof: In the concave case, we know that for each arc with positive flow, the solution

~Sal SSal 2

to the LP relaxation of the basic formulation is z,* = 7, and ¥q Since

bl
= mingeg, {f5}, it is cheaper to increase y! than any of the other y,’s. Therefore,
by letting y! = maxpex E—% and y2 = 0, s # 1, we satisfy the inequality (9) and have
found a solution to the strong formulation when we maintain the same arc flows. This
solution increases the objective value by ", 4+ f2 max{0, maxc K{z\% - %} Since we

are minimizing, the LP optimal value, and therefore the lower bound, increases by at

most this amount. W

Propositions 1 and 2 not only characterize upper bounds on the improvement obtained
by adding the strong valid inequalities (9), but they also identify an important situation

when there is no improvement.

Corollary 3 When the cost functions have no initial fized cost (i.e., f} =0,, for all arcs

a € A), the strong formulation does not improve upon the basic formulation.

4 The Extended Model

For the extended model, given by the formulation (1)-(8), the extended forcing constraints
(10), and the definitional equations x = Y, =% and 2} = > ¢ 25* for the extended
variables, we examine two structural results. The first result, the lower convex envelope
property, states that the LP relaxation of the extended formulation approximates the cost
function with its lower convex envelope represented in the space of commodity flows. The
second result, the single-path property, specifies that the LP optimal solution is integral

whenever it satisfies the demand for each commodity through a single path.



4.1 The Lower Convex Envelope Property

Suppose we consider the cost on any arc a, represented as follows, as a function of the

: K
| K| variables, x} 22, Lkl

gl @5 oy 1) = min Y el + 2y, (11)
SESa
subject to:

:c'j:z:c'js, acAkekK, (12)

SESa
— Zx'js, a€ A seS,, (13)

keK
bilys <ot <biyS, ac A scES,, (14)
0<azh <MFys, acAkeK, seS,, (15)
Y i<l acA (16)

SES(L
ys€{0,1}, a€ A seSs,. (17)

In this representation of the costs as an optimization model, the values of the parameters
z¥ are fixed,the variables being =%, 22 and y?.
Using this complex representation of the cost functions g,, we can formulate PLCNF

as a non-convex nonlinear model, NON-PLCNF, with simple network flow constraints:

min  ~ ga(zy, 72, ., 2l), (18)
a€A
subject to:
Nzt =d* keK, (19)
> bk <u,, acA, (20)
keK
0<azt<MF acAkeK. (21)

In this formulation, u, = bl s the capacity of arc a.
To prove the lower convex envelope property, we use an argument based upon La-

grangian duality and a theorem of Falk [16] that relates the Lagrangian dual to the lower
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convex envelope of the cost function (see the Appendix for an alternative proof, based
upon a characterization of the extreme points of the polyhedron defined by the LP re-
laxation of the extended formulation). To define the Lagrangian dual with respect to
NON-PLCNF, we associate Lagrangian multipliers 7% and o, > 0 with the constraints
(19) and (20), let g™ (a1, 22, .., ") = galal, 22, 2l ) + e (wF — 75 + )k for

each arc a = (i, ), and form a Lagrangian subproblem, LS(, ), written as:

Zrs(m, a) mang(’m T, a,. ,ZL'IQK‘) (22)

acA

subject to the bounding constraints (21). The Lagrangian dual, LD, is:

Zip = max ZLS (m, ) de k Zuaaa (23)

keK acA

By a direct adaptation of Falk’s theorem to our model, we obtain the following result.

Theorem 4 Let (7,a)* be an optimal solution to LD and x* be an optimal solution to
the corresponding Lagrangian subproblem, LS((m,«)*). Then, z* minimizes the lower

convex envelope of the cost function over the polyhedron defined by constraints (19) to

(21).
We will use this result to prove the following lower convex envelope property:

Theorem 5 The LP relaxation of the extended formulation approzimates the cost func-
tion Y .ca Galal, 22, ..., ZELK‘) with its lower convex envelope, in the sense that its optimal
value equals the minimum of the lower convex envelope of this function over the feasible

TeGION.

K : .
xhoa? ) ‘), we can rewrite the Lagrangian

Proof: Substituting for the function g, (z’
subproblem LS(7, «) as the following equivalent MIP model with the added binary vari-

ables y° and the auxiliary variables x**

Zys(moa) =min Y > {> "k (m a)zl} + iy, (24)

acA s€Sq, keK

11



subject to the constraints (6), (8), and (12)-(17) with ¢}*(m, o) = ¢ + 7 — 7 + o, for
a = (i,7). Note that because of the extended forcing inequalities (10), the constraints
(21) are now redundant and so we can remove them. Given that the capacity constraints
(20) are implied by the basic forcing constraints (14), we know that LD has an optimal
solution with o = 0. Suppose we form a Lagrangian dual LD¥ from the extended
formulation by relaxing the flow conservation constraints (2). LDF is defined as Z;pr =
max, Zrse(m) — Y cp d°m*, and the Lagrangian subproblem, LS¥(r), is equivalent to
LS(m,0). Consequently, LD¥ is equivalent to LD, which implies, from Falk’s theorem,
that LD® approximates the cost function by its lower convex envelope. We will now
show that LD is equivalent to the LP relaxation of the extended formulation, which
will conclude our argument.

To establish this equivalence, by the well known integrality property ([22]), it suffices

to prove that the LP relaxation of LS¥(w) always has an integral optimal solution.

ks

) and y, = (y?) denote vectors of commodity-segment

For each arc a, let z, = (x
flows and binary segment choice variables. We first note that LS () decomposes into
|A| subproblems, one for each arc a, for which we define an associated polyhedron:
Po={(%a,ya) : D5y < Doicpahs < biys Vs € S, aks < MPFys Vs € S,k € K;
Y oses, Vo <1 ys >0, Vs € Sg; xks > 0,Vs € S,,k € K}. To obtain the desired result,
we now show that for every extreme point of P,, y € {0, 1} for all s € S,. If not, then let
(Z,7) be an extreme point of P, with at least one fractional component. Without loss of
generality, we assume that 0 < 2 < 1, for t = 1,2, ..., r. Define the following r + 1 points
in P,: (2(0),y(0)) = (0,0) and (z(t),y(t)), 1 <t < r, with z¥(t) = %‘?j, zks(t) =0, s £ t,
yi(t) = Tand ys = 0, s # £. Then (2,5) = (1= X1, 79)(2(0), y(0)) + Sp, T (x(t). y(1)),

is a representation of (T,y) as a convex combination of r + 1 distinct points in P,,

contradicting the hypothesis that it is an extreme point of P,. B

In Section 5, we give a geometric illustration of this lower convex envelope result for

a two-commodity example on a single arc.
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4.2 The Single-Path Property

Frequently, the LP relaxation of the extended formulation for uncapacitated single O-D
networks with concave cost functions provides integral solutions (recall that in a single
O-D network, each commodity is defined by a single origin and a single destination).
The reason for this behavior is that in the LP optimal solution for such instances, each
commodity tends to flow through a single path. We prove that this property implies

integral LP solutions to the extended single O-D formulation.

Proposition 6 The LP relaxation of the extended formulation of single origin, single
destination (single O-D) models has an integral optimal solution whenever in the LP

solution, each commodity flows on a single path through the network.

Proof: Let D* denote the supply for commodity k. In the single O-D case, M¥ = D¥

and so the extended forcing constraints become:
b < DMy ac Ake K,s€ S, (25)

Consider an arc a of the network on which a nonempty subset K’ of the commodities
flows. Since each commodity flows on a single path, for each k € K, o xks = Dk,
We now note three basic results, which we then use to demonstrate the existence of

an integral LP optimal solution.

ZsESa wss

ks
1. For each k € K’ and s € S,, y) > P& = D .cq Vo > =5t

D
ZSGS [L’ ) BU't ZSES ya S ]' = ZSGS ya - 1

= 1 (since

2. The fact that ZSES y; = 1 and the fact that, for each k € K', > g Dik =1=

> ses, Wa — ) = 0, for each k € K’'. But, for each k € K’ and s € S,, y&

= zks = yaDk
3. Suppose that b5 ' < >, . D* < bt. Then y¢ =0 for all s < 5 and s > 1.

For any s < S, Y ,cp DF > b5, Assume y? > 0. Then, blys > >, ok =

a

Ys > per DF > ysbs = contradiction = y5 =0, Vs < 5.

13



For any s > ¢, 3, D < b3~ Assume y3 > 0. Then, b5 'ys < 3, 2k =

YS S perr DF < y2bs™! = contradiction = y$ = 0, Vs > ¢.

a

We now distinguish two cases that exhaust all possibilities:

1. For some 5, b~! < Y kek DF < b:. Our prior observations imply that y$ = 1 since

> ses, Yo =1,and y; = 0 for all s <5 or s > 5. Therefore, y; € {0, 1}, Vs € S,.

k_ 8 =
2. Y pex D¥ = b for some 5.

By our prior observations only y° > 0 or 3! > 0 are possibilities. Substituting for
T =3 perr T =y >, e DF in the objective shows that the contribution of arc
a to the cost is: Fys + Foly3t with F? = (¢33, j0 D¥+ f2). Therefore, the LP

a )

has an integral solution given by: y>*! =1 and y° = 0, Vs # 5+ 1, if F°H! < F7,

a

or y> =1 and y° = 0, Vs # 5, otherwise.

The LP solution to the extended single O-D formulation does not always satisfy this
single-path property, even for uncapacitated concave cost instances. Indeed, Krarup and
Pruzan [29] provide an instance of the uncapacitated facility location problem, which is a
special case of the more general network flow problem with concave costs, with a fractional
single O-D extended formulation. Nonetheless, Proposition 6 demonstrates why the
solution to the LP relaxation of the single O-D extended formulation is often integral,
and suggests that disaggregating single origin or single destination problems into single O-
D problems can be quite effective for uncapacitated concave cost instances. For example,
Croxton [13] reports results comparing the solution to the LP relaxation single O-D
extended formulation with the solution provided by the B&B algorithm of Cominetti and
Ortega [11] on an uncapacitated network with concave costs provided by these authors
(this network has 100 nodes, 195 arcs, and 70 commodities, and each commodity has
multiple origins and a single destination). Computational experiments show that the LP
relaxation of a single O-D extended model provides integral solutions for all test problems.

Moreover, solving the LP relaxation with a state-of-the-art LP software package proved

14



to be significantly faster than the implementation of the specialized algorithm developed

by Cominetti and Ortega.

5 Geometric Interpretation

To help understand the implications of the valid inequalities, we examine a two-commodity
example with concave costs on a single arc. Recall that, as shown by the dotted line in
Figure 3, the approximation given by the LP relaxation of the basic formulation is the
line segment from the origin to the point of maximum flow, as this is the lower convex
envelope of g, (z,).

When we disaggregate the total flow into two commodities, we can draw the cost
function g,(z},22) in three dimensions. Figure 4 illustrates the difference between the
basic and the extended formulations for this example. The basic approximation, that
is, the approximation of the cost function provided by the LP relaxation of the basic
formulation, is a single plane that lies below the cost function, i.e., the dotted line
expanded into three dimensions. The basic approximation and the actual cost function
are equal at the origin and at the point of maximum flow, where each commodity is at
its maximum, but at no other points. Figure 3 shows this behavior. On this plane we
can draw a line, which we call the diagonal, from the origin to the point of maximum
flow, b5l The approximation of the cost function provided by the LP relaxation of the
extended formulation, called the extended approximation, is formed by two planes that
intersect along the diagonal. Each of these planes equals the actual cost function at three
points: the origin, the point of maximum flow, b,‘f“', and one of the two points where one
commodity has zero flow and the other is at its maximum, M?* (called corner points).
Along the diagonal, the basic and extended approximations are equal, but at all other
points, the extended approximation improves upon the basic one. Geometrically, when
we disaggregate the variables and use the extended formulation, we fold the plane formed
by the basic approximation about the diagonal and lift each of the two resulting planes

until their corners meet the actual cost function. The extent to which this folding lifts

15






the planes is a measure of the improvement achieved by using the extended formulation.
A similar analysis can help us interpret the strong formulation geometrically. We
note that along the diagonal, maX{O,man{f/[—%} — %} = 0 and therefore as a result

of Proposition 2, the basic and the strong LP solutions have the same cost. Elsewhere,
k

+~ increases.

in the strong formulation, y! increases linearly along each dimension as 7
The result is a function that is folded along the diagonal much like that of the extended
formulation, as shown in Figure 4, but with a fold that is not as high. Consequently, the
strong formulation attains only a portion of the improvement achieved by the extended
formulation.

For the extended formulation, we can generalize these results for the | K|-commodity

case. In fact, Chan, Muriel and Simchi-Levi [10] provide closed form expressions for

these planes in the concave case. If we manipulate their expressions, we can provide a

geometric interpretation. To determine the cost of a flow vector (x), z2, ...,:ELK|) in the
. . 1 2 K|
extended formulation, we first order the commodities so that % > % > .. > %

The extended formulation then approximates the cost function, g,(x!, 22, ..., SL’LK‘), with

a’

the function:

K|
k=1
where l -
ga(z = Mf) _ga( _: Mf)
e, = A=l i beLes =12, K] (27)

We can interpret ¢!, as the slope of the segment between the cost of the sum of the
first [ — 1 commodities and the cost of the first [ commodities. For example, in the
two-commodity case, if the order of the commodities is 1 then 2, then el equals the slope
of segment 1 in the dotted line shown in Figure 5 and e2 equals the slope of segment 2.
The equation for the lighter of the two triangles in Figure 5 is g, (zl, 22) = elz] + e222.
This result provides another visual interpretation of the improvement gained from the
extended formulation: as seen in Figure 5, the approximation provided by the dotted
lines improves upon the lower convex envelope provided by the basic formulation.

An extension of the geometric and graphic interpretations discussed for the concave
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case applies to non-concave cases, but the closed-form expression given by equation (26)

is no longer valid.

6 Computational Experiments

In this section, we present computational results on a large set of randomly generated
instances, with a variety of cost structures. In all instances, each commodity has a single
origin and multiple destinations. Therefore, we can apply classic variable disaggrega-
tion techniques that consist of redefining the set of commodities so that each “new”
commodity is a pair (“old” commodity, destination). In the resulting reformulation of
the problem, each commodity has a single origin and a single destination (the single
O-D case). We will compare these two commodity definitions, single O-D and single
origin-multiple destinations, within the basic, strong and extended formulations. We are
primarily concerned with comparing the LP relaxations of the various formulations. To
solve the LP relaxations, we used the dual simplex algorithm of CPLEX (version 7.1).
We found that of the algorithms available in CPLEX, the dual simplex usually performed
the best on our set of instances.

In addition to learning how the formulations compare with each other, we also wish
to determine how tight each of these formulations is as compared with the optimal MIP
solution. For small problems, we are able to use the branch-and-bound (B&B) algorithm
implemented in CPLEX to solve the MIP to optimality. On larger problems, we used a
rounding heuristic to find upper bounds on the optimal value. This heuristic first solves
the LP relaxation and examines the optimal values of the binary y variables. It then
fixes to 1 all the y variables that have values above a user-specified threshold. In our
tests, we used a threshold of 0.7. The heuristic also fixes to zero all the y variables whose
value in the optimal LP relaxation solution is zero. With these variables fixed, we then
perform B&B on the resulting restricted problem. This restricted problem might not
have a feasible solution, but if it does, this solution provides an upper bound. For each
of our instances, we always found a feasible solution with this heuristic for at least one

of the various formulations we tested, so we could always obtain an upper bound.
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We performed the experiments on a Sun Enterprise 10000 with 64 CPUs (with each
CPU operating at 450 MHz) and 64 GBs of RAM memory. For each problem instance
and for any formulation tested, we set a limit of 1 hour of CPU time for running each of
the three phases (LP relaxation, heuristic and B&B) of the algorithm.

To analyze the results, we provide two performance measures for each problem in-
stance and each formulation: (1) the gap, GAP(%), between the optimal LP objective
value, LP, of each formulation and the best known upper bound, UB, computed as GAP
= [(UB-LP) / LP]*100; and (2) the CPU time in seconds, CPU(s), to solve the LP

relaxation of each formulation.

6.1 Set of Instances

We obtained the problem instances from a network generator similar to the one described
in [19, 20] for multi-commodity capacitated fixed-charge problems. When provided with
target values for |V|, |A|, and | K|, this generator creates arcs by connecting two randomly
selected nodes (no parallel arcs are allowed). It selects commodities by also choosing at
random one origin and 10 destinations for each commodity. We generated the variable
costs, capacities, and demands as uniformly distributed over user-provided intervals.
We could then scale the capacities to obtain networks with various degrees of capacity
tightness, using the capacity ratio, C = [A[T/ 3,y tta, With T = 37, 10 > e o) d¥ the
total demand flowing through the network. We adjusted the capacities so that this
ratio comes close to user-provided values. As C approaches 1, the network is lightly
capacitated. It becomes more congested as C' increases.

For each network, we generated two cost structures: concave and non-concave. For
both types of instances, we provided the maximum number of segments of the cost
function, S as a parameter. For concave instances, we randomly generated a set of
decreasing variable costs within the specified interval for each arc. We also set b =

2T

gz, for each arc a, so that the segment length increases as s increases, as is typical

of transportation costs [3]. We then adjusted the number of segments on each arc a

so that b = min{7T, u,}, with u, as the capacity of the arc. Given variable costs,
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breakpoints, and f!, the initial fixed cost, we can then compute the appropriate fixed
costs for the remaining segments so that the resulting function is concave. We obtained
non-concave instances by imposing b = ]_%-‘, for each arc a, so that each segment is of
equal size, except the last one. We then adjusted the number of segments to account for
the capacities on the arcs. The network generator provided the variable costs, which are
not necessarily decreasing, as in the concave case. Given an initial fixed cost f! for each
arc, the remaining fixed costs are computed as fi = sfl. When f! = 0, the resulting
function contains no fixed cost on any of the segments, while when f! > 0, we obtain a
staircase cost function. These functions arise in several applications in production [24],
telecommunications [30] and logistics [15].

We classified the generated instances according to seven main characteristics:
1. The cost structure, concave or non-concave.
2. The initial fixed cost: we tested two values, 0 and 1000.

3. The number of commodities: we distinguished between single-commodity and multi-
commodity instances, the latter having 10 commodities (recall that each commodity

is defined by a single origin and 10 destinations).

4. The network size (NET), represented by the pair (|V],|A|); we generated networks
having the sizes (20,75), (20,100), (25,100) and (25, 150).

5. The maximum number of segments (SEG) of the cost function: we generated in-

stances with a maximum of 4, 6 or 8 segments.

6. The maximum value of each variable cost (VAR): we tested two values, 4 and 10

(we fixed the minimum value of each variable cost to 1).

7. The capacities on the arcs (CAP): we distinguished uncapacitated instances, U,
and capacitated instances, C; the first satisfy u, = T', while we obtained the second

by setting the capacity ratio to the value 2.
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We analyzed the results obtained on the resulting 384 generated instances based upon

these characteristics.

6.2 Performance Analysis on Single-Commodity Instances

Our goal with the computational analysis is to understand the impact of disaggregation
on the quality of the LP relaxation for different cost structures. We are able to draw
several conclusions by examining the simpler single-commodity case. We compare three
formulations: the single origin-multiple destinations basic model; the single origin-single
destination strong model, which disaggregates the commodity by destination; and the
single origin-single destination extended model, which further disaggregates the flow vari-
ables by segment. We will refer to these as the basic, strong, and extended models. Tables
1 and 2 summarize the results obtained on the concave and non-concave instances, re-
spectively (where ext. is an abbreviation for extended). We distinguish instances with no
initial fixed cost (f! = 0) and those with an initial fixed cost of 1000 (f! = 1000). The ta-
bles isolate four characteristics of the instances, NET, SEG, VAR and CAP, and compare
their results, GAP(%) and CPU(s), averaged over all instances having the corresponding
value for the given characteristic. Thus, each instance contributes to four entries in each
table. For each characteristic, we indicate, between parentheses, the number of instances
used to compute the average results.

These results suggest several conclusions that are helpful in choosing when each model
is the most appropriate to use. The first is that, as one might expect, the less linear the
cost function, the more improvement we gain from disaggregation by adding the extended
forcing constraints. This can be seen, for instance, in the concave results, by noting that
as the number of segments increases, the gap between the basic and extended formulations
increases. This is a result of the method we used to define the concave cost functions,
since a function with more segments is “less linear.”

A second set of conclusions can be drawn by examining the effect of the initial fixed
cost. As a result of Corollary 3, the strong formulation does not improve upon the basic

one when the initial fixed cost is zero (as can be seen in Tables 1 and 2). When the initial
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=0 f1'=1000

Basic | Strong | Ext. || Basic | Strong | Ext.

NET (20,75) | 12.7 12.7 1.6 || 53.5 8.3 6.3
0 0 0 0 1 3

(12) (20,100) || 10.1 10.1 2.1 || 58.6 5.0 3.5
0 0 0 0 1 4

(25,100) || 11.1 11.1 1.1 || 59.6 3.8 2.7
0 0 0 0 1 4

(25,150) | 9.2 | 92 |03 | 627 | 40 | L7
0 0 0 0 2 4

SEG 4 7.2 7.2 0.7 || 57.0 4.6 3.3
0 0 0 0 1 3

(16) 6 10.7 10.7 1.4 | 58.5 4.8 3.0
0 0 0 0 1 4

8 14.5 14.5 1.7 60.3 6.4 4.4
0 0 1 0 2 4

VAR 4 8.0 8.0 0.3 || 64.3 4.2 3.5
0 0 0 0 1 5

(24) 10 13.6 13.6 | 2.3 || 52.9 6.4 3.7
0 0 0 0 1 3

CAP U 12.1 12.1 0.8 || 63.0 3.1 1.2
0 0 0 0 1 3

(24) C 94 94 1.7 || 54.2 7.4 5.9
0 0 0 0 1 4

Table 1: Results for 48 Single-Commodity Concave Instances: GAP(%) and CPU(s)
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=0 f1'=1000

Basic | Strong | Ext. || Basic | Strong | Ext.
NET (20,75) 20.7 20.7 3.9 24.2 11.9 11.8
0 0 0 0 4 8
(12)  (20,100) | 19.6 196 | 4.5 || 285 13.4 | 134
0 0 1 0 7 11
(25,100) || 18.8 188 | 2.2 || 304 12.7 | 125

0 0 0 0 7 15
(25,150) | 19.3 | 19.3 | 0.9 | 33.1 | 141 |13.8

0 0 1 0 10 19

SEG 4 15.0 15.0 2.0 || 37.3 9.3 9.2
0 0 0 0 4 11
(16) 6 20.2 | 20.2 2.7 || 28.5 15.1 | 14.9
0 0 0 0 7 15
8 23.6 23.6 3.6 21.4 14.7 | 14.5

0 0 1 0 9 15
VAR 4 13.8 13.8 1.1 29.5 13.2 13.2
0 0 0 0 7 14
(24) 10 254 | 254 | 4.6 | 28.6 12.8 | 12.6
0 0 1 0 7 13
CAP U 216 | 216 2.1 || 30.0 124 | 12.3
0 0 1 0 7 15
(24) C 17.7 17.7 | 3.6 || 28.1 13.6 | 13.5
0 0 0 0 6 12

Table 2: Results for 48 Single-Commodity Non-Concave Instances: GAP(%) and CPU(s)
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fixed cost is positive, however, the improvement is significant. In addition, the extended
formulation improves significantly upon the strong formulation when there is no fixed
cost, but only slightly when the fixed costs are large. This is especially the case for non-
concave, staircase (i.e. when f! = 1000), cost structures. This result suggests that for
large problems with high fixed costs, one might be better to use the strong formulation,
as it is only slightly weaker than the extended formulation, but will have fewer variables
and constraints. However, for problems with no initial fixed costs, it might be worth the
effort of solving the larger extended formulation.

The computational results also show that the basic formulation is particularly weak
when the cost structure is concave with a large initial fixed cost, but the strong formula-
tion offers significant improvement. Figure 6 illustrates in more detail the impact of the
initial fixed cost for the concave cost case. It shows the gaps for each of the three formu-
lations versus the initial fixed cost, for an uncapacitated instance of size |V| = 20 and
|A| = 75, with concave costs. As we see, the gap for the basic formulation tends to in-
crease as the fixed cost increases. This result is to be expected since the two-dimensional
lower convex envelope of the cost function tends to deteriorate as an approximation with
an increase in the initial fixed cost, as can also be seen in Figure 3.

The gaps for the two other formulations, on the other hand, show no clear trend. It
is interesting to note, however, that when the fixed cost varies from 75 to 150, the gap
for the strong formulation decreases, while no trend can be observed for the extended
formulation. If we analyze the LP solutions provided by the strong formulation, we can
explain this phenomenon. For this network, the flows in the LP optimal solution remain
the same for all values of the initial fixed cost between 75 and 150. Similarly, the flows in
the MIP optimal solution also remain the same. In addition, for a given fixed cost, both
the LP and integer solutions route the flow the same way and the solutions differ only
by how the models allocate the flow among the segments. This solution sends the flow
for each commodity on a single path. Therefore, in both solutions, > ¢ y; = 1 for each
arc with positive flow. As a result, an increase in the initial fixed cost by A, increases

the optimal cost of both problems by A on each arc with positive flow. Therefore, when
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Figure 6: Evolution of GAP Relative to Initial Fixed Cost for a Single-Commodity
Instance

we compute the gap using [(UB — LP) / LP], the numerator remains constant for all
values of the initial fixed cost. The cost of the LP solution, however, increases as the
fixed cost increases. Therefore, the relaxation gap for the strong formulation decreases
as the fixed cost increases.

This analysis relies on two observations particular to the solutions to this network
and demand structure. The first is that the optimal MIP and LP solutions of the strong
formulation do not change as the fixed cost changes and, in fact, the routing of the flows
is the same in both solutions. We also note that commodities are routed on single paths
in this solution.

Although other problems will not always exhibit these two features, they seem to be
sufficiently present that the resulting trend often holds; that is, for concave problems, the

relaxation gap for the strong formulation tends to decrease as the fixed cost increases.
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This result is important because it suggests that problem instances with concave costs
and large initial fixed costs are good candidates for using disaggregation techniques.

While the initial fixed cost impacts the relative performance of these formulations,
other problem characteristics are also important. For instance, although all formulations
are solved quickly, when the initial fixed cost is zero, the problem is more difficult to
solve with larger variable costs, especially for non-concave structures. When initial fixed
costs are large, however, the impact of the variable costs becomes marginal.

Whether the problem is capacitated also plays a role in the computational results.
The basic formulation provides smaller gaps for capacitated instances than uncapaci-
tated ones. This is due to the manner in which the costs were generated because the
lower convex envelope in two dimensions provides a better approximation for capacitated
instances. For the extended formulation, however, the gaps are larger for capacitated in-
stances, since the capacities tend to cause the flow of each commodity to be split among
multiple paths, unlike the uncapacitated instances, for which the solution is often integral
(as a result of Proposition 6), or almost integral, especially for concave cost structures.

The number of segments in the cost function can also have an effect. For staircase cost
structures (non-concave with f! = 1000), the difference in the gaps between the basic
and extended formulations decreases as the number of segments increases, since the basic
formulation improves as we increase the number of segments. In addition, the solutions to
the strong model and the extended model are often the same, in particular for problems
with fewer segments. As the number of segments increases, however, we find instances
with a small difference between these two formulations. This result contrasts with the
other cost structures for which the gap increases as the number of segments increases.
In general, we expect the improvement from using the extended forcing constraints to
increase as the number of segments increases, since the strong forcing constraints are
aggregated over segments.

And finally, the form of the cost function is important. We find larger gaps for the
extended formulation for non-concave costs than for concave costs, but we still observe

a remarkable improvement between the basic and extended formulations. Although not
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as small as for the concave case, the gaps for the extended formulation are within 5% on
average when f! = 0. In addition, for staircase cost structures, the LP relaxations are

harder to solve than with other cost structures.

6.3 Performance Analysis on Multi-Commodity Instances

Further insight can be gained by examining multi-commodity instances. We consider
problem instances with 10 commodities, with each commodity still defined with one ori-
gin and 10 destinations. Given the weakness of the basic model for single-commodity
instances, we focus on formulations that use either the strong or the extended forcing
constraints. In defining the commodities, we examine two choices: each commodity is
either represented with a single origin and multiple destinations, or we disaggregate them
and represent them by a single origin and single destination. We thus compare four dif-
ferent formulations: the single origin-multiple destination strong (MS) model, the single
origin-multiple destination extended (ME) model, where we add the extended forcing
constraints, the single origin-single destination strong (SS) model, where we disaggregate
the commodities by destination and use the strong forcing constraints, and finally, the
single origin-single destination extended (SE) formulation, where we disaggregate the
variables by destination and use the extended forcing constraints.

We know the fully disaggregated formulation (SE) will provide the tightest bounds,
but the resulting problem size might be unwieldy. Therefore, one might want to compro-
mise with one of the intermediate models. Since with these instances we have a choice of
disaggregating the commodities by destination or disaggregating the forcing constraints
by segment, we are particularly interested in which disaggregation is the most effective
under different circumstances. Tables 3 and 4, which are similar to Tables 1 and 2,
present our results for the concave and non-concave instances.

Notice that when the problem has no initial fixed cost, the solutions to MS and
SS are the same; in other words, disaggregating the commodities has no effect. The
explanation for this is similar to the reasoning underlying Corollary 3. From a solution

to the LP relaxation of MS, we can derive a feasible solution to the LP relaxation of SS
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F=0 FE=1000
MS [ME| SS [SE || MS [ ME | SS | SE
NET (20,75) | 19.8 | 7.7 | 19.8 | 0.7 |[35.1 | 20.5 | 182 | 9.2
0| 0o | 4 |14 1 | 1 |12 423
(12)  (20,100) | 15.1 | 7.3 | 15.1 | 0.4 | 43.8 | 40.8 | 23.7 | 19.4
0 | 0| 4 |13 2 | 2 |[329]1337
(25,100) | 17.3 | 7.9 | 17.3 | 0.6 || 50.4 | 46.9 | 20.9 | 24.3
0|0 | 5 |17 1 | 2 |273]|1075
(25,150) || 9.3 | 4.7 | 9.3 | 0.3 || 55.5 | 53.1 | 33.4 | 30.2
0 | 0] 4|8 2| 2 |577|2186
SEG 1 112 45 | 11.2 0.3 | 40.2 [ 37.1 | 18.6 | 14.0
0| o | 2 |4 1] 1 [214] 59
(16) 6 16.2 | 7.5 [16.2 | 0.5 | 46.6 | 42.9 | 26.7 | 21.1
0 | 0| 4 |14 1 | 2 |[318]1237
8 18.7 | 8.7 | 18.7 | 0.7 || 51.7 | 47.7 | 33.5 | 27.2
0| 0| 6 |21 2 | 2 |441 | 1932
VAR 4 11.7 | 5.8 | 11.7 | 0.3 | 48.3 [ 46.2 | 27.2 | 24.0
0] 0] 3 |8 2 | 2 |427 1689
(24) 10 | 19.1| 8.0 |19.1 | 0.6 || 44.1 | 39.0 | 25.3 | 17.6
0| o | 5 |19 1 | 1 [222] 822
CAP U 138 | 6.8 | 13.8 | 0.2 [ 50.8 | 47.8 [ 28.9 | 24.6
0] 0] 3 |8 2| 2 |32 |1341
(24) C 16.9 | 7.0 | 16.9 | 0.7 || 41.6 | 37.4 | 23.7 | 17.0
0| o | 5 |18 1 | 1 [329]1170

Table 3: Results for 48 Multi-Commodity Concave Instances: GAP(%) and CPU(s)
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FF=0 FE=1000
MS [ME| SS [SE [ MS [ME | SS | SE
NET (20,75) | 23.0 | 11.3 | 23.0 | 2.0 | 38.7 | 38.7 | 18.8 | 18.4
0 | 0| 2 [66] 2 | 4 | 487 |1962
(12)  (20,100) || 17.6 | 10.8 | 17.6 | 1.2 | 48.1 | 48.1 | 19.4 | 19.4
0 | 0 | 2 |55 | 5 | 7 |1030 |2555
(25,100) || 20.6 | 11.7 | 20.6 | 2.2 | 48.5 | 48.5 | 16.7 | 16.7
0| 0| 2 [62] 4 | 7 | 9372323
(25,150 || 12.3 | 6.8 | 12.6 | 0.9 | 55.2 | 55.0 | 18.7 | 185
0 | 0 | 3 |29 | 10| 12 | 1743|2727
SEG 4 133 ] 7.8 | 133 | 1.1 | 49.3 | 49.2 | 13.4 | 13.0
0 | 0 | 2 | 11| 3 | 5 | 434 | 887
(16) 6 19.0 | 10.3 | 19.0 | 1.2 || 49.9 | 49.9 | 19.7 | 19.7
0 | 0| 2 [45] 5 | 9 | 878 |2734
8 22.8 | 12.4 | 22.8 | 2.0 || 46.4 | 46.4 | 22.2 | 22.1
0 | 1 | 3 [103] 8 | 10 | 18353554
VAR 4 137 81 | 13.7] 0.9 | 48.7 | 48.6 | 19.7 | 19.6
0 | 0o | 2 |29 7 | 9 |1342 2627
(24) 10 | 23.1]122]23.1 |20 | 483|483 | 17.1 | 17.0
0 | 0| 2 [77] 4 | 6 | 76 |2157
CAP U 16.7 | 9.8 [16.7| 0.9 | 50.5 | 50.5 | 18.6 | 18.6
0 | 0| 2 [37] 6 | 9 |1031]2301
(24) C 20.0 | 10.6 | 20.0 | 2.0 | 46.5 | 46.4 | 18.2 | 17.9
0| 0| 2 [69] 4 | 6 |1067 2482

Table 4: Results for 48 Multi-Commodity Non-Concave Instances: GAP(%) and CPU(s)
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by increasing y!. When f! = 0, this solution will have the same cost as the solution to
MS. This property holds for all cost structures.

Many of our conclusions for the single-commodity instances apply to these multi-
commodity instances as well. We note, however, that the gaps shown for capacitated
problems with f! = 1000 are smaller than for uncapacitated instances, contrary to what
we observed in the single-commodity case. A careful examination of the results reveals
that for several instances, the best upper bound provided by the heuristic is worse for
problem instances with no capacities, which induces larger gaps. For instances solved
to optimality, however, the gaps for uncapacitated instances are always better than for
capacitated ones, which confirms the results obtained with single-commodity networks.

We also see that all the formulations generally exhibit larger gaps when the problem
has an initial fixed cost. The SE model, which disaggregates the commodities and the
forcing constraints, still improves significantly upon the other formulations, except for
staircase cost structures, for which formulation SS is almost equivalent. When the prob-
lem has no initial fixed cost, the solution to formulation SE is often integral, especially
for uncapacitated concave structures, but we also notice a substantial improvement from
just introducing the extended forcing constraints without disaggregating the commodities
by destination (i.e., comparing MS and ME). When the problem has an initial fixed cost,
we do not obtain any significant improvement without disaggregating the commodities.

We can gain further insight into these formulations by examining the trend in the
gaps as we modify the initial fixed cost. In Figure 7, we see how the gaps change as we
vary the magnitude of the initial fixed cost for an uncapacitated network of size |V| = 20
and |A| = 75 and with concave costs. As the fixed cost increases, the gaps for MS, ME
and SE tend to increase. We see, however, that the gap for formulation SS tends, as we
already observed in Figure 6, to decrease. As a result, for small fixed costs, formulation
ME is superior to formulation SS, but for large fixed costs, formulation SS is tighter than
ME.

We might ask why the gap for formulation MS behaves differently than the gap for

formulation SS, since both have the same constraint structure. The rationale goes back
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to the discussion of why the relaxation gap for the strong formulation decreases. Recall
that this result relies on the single path property. For formulation MS, a commodity is
defined by one origin, but multiple destinations. Since the destinations for each origin
are likely to be spread throughout the network, we would not expect the flow to multiple
destinations to “stick together.” Therefore, the LP solution to MS will not satisfy the
single path property. As a result, the relaxation gap for MS does not decrease as the
fixed cost increases, as it does for SS.

Figure 7 also provides a view of the trade-off between disaggregating the commodities
versus disaggregating the forcing constraints. We see that as the fixed cost increases, the
gain from disaggregating the commodities increases (i.e., the difference between MS and
SS and the difference between ME and SE both increase), while the value of disaggre-
gating the forcing constraints decreases (i.e., the difference between MS and ME and the
difference between SS and SE both decrease). This is an important consideration when
choosing a formulation. In determining which formulation is the most appropriate, it is
clear that we should consider the relative magnitude of the fixed costs. These results
suggest that the fully disaggregated formulation (SE) is most effective for problems with
concave costs and with small initial fixed costs. If, however, we want to use a smaller for-
mulation, we should keep the commodities aggregated and use formulation ME whenever
the problem has small initial fixed costs. When the problem has larger initial fixed costs,
disaggregating the commodities but using the strong forcing constraints (formulation SS)
might be the most appropriate.

In Figure 8, we vary the number of destinations that each origin serves, for the
same network as in the previous figure, but with an initial fixed cost of 1000. In this
case, we retain the same expected supply out of each origin. Therefore, as we increase
the number of destinations served, we decrease the expected demand for each origin-
destination pair. We see that, with an increasing number of destinations per origin, the
gaps for the formulation with aggregated commodities (MS and ME) tend to increase,
while the gap for SS tends to decrease. This effect is similar to the one observed in

the previous figure. With an increasing number of destinations per origin, the demand
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Figure 7: Evolution of GAP Relative to Initial Fixed cost for a Multi-Commodity Instance
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Figure 8: Evolution of GAP Relative to Number of Origins per Destination for a Multi-
Commodity Instance

of the individual commodities decreases. Therefore, the relative magnitude of the fixed
costs to the demand of each commodity increases. Also, as expected, the difference
between MS and SS and the difference between ME and SE both increase. This outcome
reflects the intuitive notion that as the number of commodities increase, the gains from

disaggregating by commodity also increase.

7 Conclusions

We studied three MIP formulations for modeling multi-commodity network flow problems
with piecewise linear cost functions: basic, strong and extended formulations. We first
provided an upper bound on the improvement in the objective value that the strong LP
relaxation could provide over the basic LP relaxation. We recalled a result of Croxton,

Gendron and Magnanti [14], who showed that the LP relaxation of the basic formulation
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estimates the cost function with its lower convex envelope, where the cost is seen as a
function of the total flow on each arc. We generalized this result by showing that the
extended formulation approximates the cost function with its lower convex envelope in
the space of commodity flows, the cost on each arc being represented as a function of
the |K| variables corresponding to the flow for each commodity. For the extended LP
relaxation, we also derived a characterization of LP integral solutions. With these results,
we examined a two-commodity example and developed a geometrical view of the impact
of disaggregation on a single arc.

Through computational experiments we studied how this impact plays out over an
entire network. The computational results reported here allowed us to compare the
solutions of different LP relaxations, as well as to a computed upper bound. These
results showed that disaggregation techniques can significantly improve LP lower bounds
for multi-commodity network flow problems with piecewise linear costs. In addition, they

suggested the following guidelines when choosing among the formulations:

e The less linear the cost function, the more the expected improvement from disag-

gregation.

e The relative magnitude of the initial fixed costs plays an important role. For

instance:

— The basic formulation is particularly weak when the cost structure is concave
with a large initial fixed cost. These problem instances are good candidates

for using disaggregation.

— For cost functions with no initial fixed cost, the strong formulation does not

improve upon the basic formulation (Corollary 3).

— For cost functions with large initial fixed costs, the strong formulation im-
proves significantly over the basic formulation, and the extended formulation

provides only slight additional improvement.

— For concave cost functions, the relaxation gap for the strong formulation tends

to decrease as the fixed cost increases.
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— On multi-commodity problems, if the size of the formulation is an issue and it is
necessary to choose between disaggregating the commodities or disaggregating
the forcing constraints, it is preferable to disaggregate the forcing constraints
when fixed costs are small, but to disaggregate the commodities when fixed

costs are high.

e The basic formulation performs better for capacitated problems than uncapacitated

ones, but the gaps for the extended formulation are larger for capacitated problems.

e The improvement gained from using the extended formulation increases as the

number of segments in the cost function increase.

e The extended formulation is not as tight on instances with staircase costs as it is

for other cost structures.

e On a multi-commodity network, the benefit from disaggregating by commodity

increases as the number of destinations served by each commodity increases.

These results provide computational evidence that disaggregation can be quite pow-
erful when applied to multi-commodity network flow problems with general piecewise
linear costs. However, for staircase cost functions and large networks, the LP relaxations
are computationally difficult to solve, so the trade-off between solution time and for-
mulation tightness requires close examination. Solving large problems in practice often
requires more sophisticated approaches. For example, Croxton, Gendron and Magnanti
[15] exploit the disaggregation techniques discussed in the present paper to develop a
cutting-plane algorithm for the merge-in-transit problem, a large-scale multi-commodity

network flow problem with piecewise linear costs.
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Appendix: Proof of the Lower Convex Envelope Prop-
erty by Extreme Point Characterization

We provide an alternative proof of the lower convex envelope property (Theorem 5),
based on a characterization of the extreme points of the polyhedron associated with the
LP relaxation of the extended formulation. More specifically, we will show that for any
arc a with flow values of Z¥ for each commodity k, the objective value of the LP relaxation
of the extended formulation obtained by optimally choosing the other variables is given
by the lower convex envelope of the cost function on arc a. Since the lower convex
envelope of a separable sum of functions (defined over a bounded polyhedron) equals
the sum of the lower convex envelopes of these functions [16], the lower convex envelope
property follows directly. We prove this by first characterizing the extreme points of the
polyhedron associated the LP relaxation of the extended formulation. We then show that
the minimum cost convex combination of these extreme points defines the lower convex
envelope of the cost function on each arc when it is represented in | K|+ 1 dimensions.
As in the proof of the lower convex envelope property by Lagrangian duality, let P,
be the polyhedron associated to the LP relaxation of the extended model on a single
arc, a, with no constraints on the flow of each commodity (i.e., Po={(xq,ys) : b 1ys <
Drer ThT S biys, Vs € Sg; aks < MEys Vs € So ko€ Y s v < 1 ys >0, Vs € Sa;
2% > 0,Vs € S,, k € K}). The same proof shows that every extreme point of P, satisfies
ys € {0,1}, Vs € S,, implying that for each arc a with positive flow, every extreme point
of P, satisfies the condition y’ = 1, for some ¢t € S, and y? = 0, s # ¢t. We can write the
corresponding polyhedron associated with segment ¢ as: P! = {z, : b, < 3, ot <
bl akt < MF 2 > 0,Vk € K}. Any extreme point of P! must satisfy at least |K|
linearly independent constraints as an equality. Only two kinds of points will satisfy
this requirement. One is the set of points with z* € {0, M*¥} Vk € K. We refer to
these points as corner points because they correspond to the corners of the feasible | K |-
dimensional hypercube (thus, among these corner points, we include the origin, which

is the unique extreme point of P, corresponding to the situation when an arc has zero
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flow). The other is the set of points with Y, . 2% = ! or b~!, and z¥ € {0, M)} for at
least |K| — 1 of the | K| variables. We refer to these as ridge points and they correspond
to the extreme points of the |K|-dimensional face defined by >, . % = bt (or b1)
and 0 < 2% < MF. Note that, if we represent the cost function, g,(zl, 22, ...,SL’LK‘), in
|K| + 1 dimensions, these corner and ridge points correspond to the extreme points of
the | K| + 1-dimensional segments of the cost function.

Now, consider ﬁa, the polyhedron associated with the LP relaxation of the extended
formulation on a single arc with flow values of Z* for each commodity k: Po={(, ya) €
Pt Yo ks = 7% VE € K}. Since P, is obtained from P, by adding |K| linear
equalities, it is easy to show that any extreme point of ﬁa is a convex combination of at
most | K|+ 1 of the extreme points of P,, i.e., the corner and ridge points corresponding
to the extreme points of the | K|+ 1-dimensional segments of the cost function. Therefore,

as we vary the values of 7%, the cost minimizing convex combination will be given by the

: K
lower convex envelope of the cost function, g,(x}, 22, ..., ! ‘).
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